Math 10A with Professor Stankova
Worksheet, Discussion \#26; Wednesday, 10/25/2017
GSI name: Roy Zhao

## Review

## Example

1. Find the solution to $\frac{d x}{d y}=e^{x-y}$ with $x(0)=0$.

Solution: We can split $e^{x-y}$ as $e^{x} \cdot e^{-y}$ and now splitting gives

$$
e^{-x} d x=e^{-y} d y \Longrightarrow-e^{-x}=-e^{-y}+C
$$

so $e^{-x}=e^{-y}+C$ and $-x=\ln \left(e^{-y}+C\right)$ and $x=-\ln \left(e^{-y}+C\right)$. Plugging in $x(0)=0$ gives $0=-\ln (1+C)$ so $1+C=0$ and $C=-1$. So

$$
x=-\ln \left(e^{-y}-1\right) .
$$

## Problems

2. TRUE False In order to justify integration by parts, you need the product rule.

Solution: By product rule, we have that $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ and hence

$$
\int u v^{\prime}=\int u d v=\int(u v)^{\prime}+u^{\prime} v=\int(u v)^{\prime}+\int v d u=u v+\int v d u .
$$

3. Calculate $\int_{0}^{1} e^{-x} d x$. State the reasoning behind each step.

Solution: An anti-derivative of $e^{x}$ is $-e^{-x}$. So, by the first fundamental theorem of calculus, we have that

$$
\int_{0}^{1} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{1}=-e^{-1}-\left(-e^{0}\right)=1-e^{-1} .
$$

4. Write an antiderivative of $e^{x^{2}}$. State any reasoning why.

Solution: An example is $\int_{0}^{x} e^{t^{2}} d t$. This is an antiderivative because by the second fundamental theorem of calculus, the derivative of this function is $e^{x^{2}}$, and hence it is an antiderivative.
5. Find an antiderivative of $f^{\prime}(x)$. Is it the only one?

Solution: An antiderivative is $f(x)$. This is not the only one because it could differ by a constant, like $f(x)+5$ is one as well.
6. If $y_{1}(x)$ and $y_{2}(x)$ are solutions do $\frac{d y}{d x}=5 y$, show that $y_{1}+y_{2}$ is a solution and explain all steps.

Solution: Since both $y_{1}$ and $y_{2}$ are solutions, we know that $y_{i}^{\prime}=5 y_{i}$. Therefore, we have that

$$
\frac{d}{d x}\left(y_{1}+y_{2}\right)=\frac{d}{d x}\left(y_{1}\right)+\frac{d}{d x}\left(y_{2}\right)
$$

by the addition differentiation law, and then

$$
=5 y_{1}+5 y_{2}=5\left(y_{1}+y_{2}\right)
$$

since $y_{1}, y_{2}$ are solutions. Thus, this shows that $y_{1}+y_{2}$ is a solution, since it satisfies the differential equation.

